NEW HIGHLY IRRITANT 1-ALKYLDAPHNANE DERIVATIVES FROM SEVERAL SPECIES OF THYMELAEACEAE

S. Zayed, W. Adolf, A. Hafez and E. Hecker Institut für Biochemie, Deutsches Krebsforschungszentrum Heidelberg, Germany

(Received in UK 27 July 1977; accepted for publication 8 August 1977)

We report herein the isolation of new highly irritant diterpene esters from the genera Pimelea, Daphnopsis and Synaptolepis (Thymelaeaceae), which are structurally related to gnidimacrin¹⁾ recently isolated from <u>Gnidia subcordata</u> (Meissn.) Engl. (Thymelaeaceae).

I a)
$$(C-1)-R=(C=1)-CH(CH_3)-(CH_2)_7$$
; $R'=COC_6H_5$
b) $(C-1)-R=(C-1)-CH(CH_3)-(CH_2)_7$; $R'=H$

b) $(C-1)-R=(C-1)-C_{13}H_{26}-CH=CH$

c) $(C-1)-R=(C-1)-CH(CH_3)-(CH_2)_6-CH(OCOC_6H_5)$

Pimelea factor P_2 and Daphnopsis factor R_1 (Ia). Both factors are identical according to their spectral data. (P2 0.005 and 0.4% of methanol extract from leaves and roots or stems, respectively; R_1 0.08%; ID_{50} 0.003 nmoles/ear) ms: 638; ir (CH₂Cl₂): 3470 (OH), 1700 (CO), 1640 cm⁻¹ (C=C); uv (MeOH): $\lambda_{\rm max}$ 195, 229 and 279 nm ($\varepsilon_{\rm max}$ 45200, 14800 and 1570); nmr (CDC1 $_3$, δ): 5 arom. H: 8.05 (m) and 7.57 (m); 3-H: 5.06 (d, J=5Hz); 16-H₂: 4.95 (s) and 4.85 (s); 14-H: 4.24 (d, J=3Hz); 5-H: 4.1 (s); $20-H_2$: $3.76^{\frac{1}{2}}0.12$ (J_{AB} = 12Hz); 7-H: 3.32 (s); 10-H: 3.1 (d, J=13Hz); 8-H: 2.88 (d, J=3Hz); $17-H_3$: 1.75 (s); $19-H_3$: 1.04 (d, J=7Hz); $18-H_3$: 0.82 (d, J=7Hz); a further methyl group (1.44) ppm, d, J=6Hz) is decoupled upon irradiation at 2.6 ppm. - The spectral data suggest the presence of a 9α , 13α , 14α -orthoester and a 6α , 7α -oxide group. The data indicate the absence of a 1,2double bond and the presence of a saturated $C_{10}^{}$ -orthoester moiety including a methyl group and a double bond equivalent. The latter suggests a cyclic structure for the orthoester rest. The assignment of the signal at 3.1 ppm for 10-H lends support from the finding that in a hydrogenation product of the Hippomane factor group M_{ν}^{2} the signal of this proton appears as dd (J=13 and 5 Hz) at 2.95 ppm. The chemical shift of 10-H indicates its α -position (vicinity of the 6α , 7α -oxide), multiplicity and coupling constant are consistent with configuration of a 1-alkyl side chain.

 P_2 gives a 5,20-acetonide with acetone and p-toluene-sulfonic acid. Alkaline transesterification of P_2 leads to Ib which yields a 3,5,20-triacetate upon acetylation (Ac_2 0/pyridine). The β -position of the 3-acyl group could be established, since upon reaction with acetone and p-toluene-sulfonic acid Ib affords a 3,4:5,20-diacetonide, which contains no free OH group. Moreover, Ib can be cleaved with sodium periodate in aqueous dioxan solution to give a 3-aldehyde-4-ketone (10-H: 4.45 ppm). The latter affords, upon acetylation, a 5,20-diacetate which contains no free

OH-group. From these reactions, structure Ia is suggested for Pimelea factor P_2 . The secondary methyl group of the 1-alkyl residue was located by analogy to gnidimacrin, at C-21. - Another Gnidia factor, gnilatimacrin, reportedly is identical with P_2 ; chemical data are not available, yet it has been assayed for its capacity to induce plasminogen activator 4.

 $\begin{array}{l} \underline{\text{Pimelea factor S}_7} \text{ (IIa, 0.008\%, ID}_{50} = 0.009): ms: 532; ir (CH}_2\text{Cl}_2): 3510 \text{ (OH), } 1730 \text{ (CO), } \\ 1640 \text{ cm}^{-1} \text{ (C=C); uv (MeOH): } \lambda_{\text{max}} \text{ 193, } 306 \text{ nm (ϵ_{max} 10020, 105); nmr (CDCl}_3, \&): } 16-\text{H}_2: 5.05 \text{ (s)} \\ \text{and 4.94 (s,br.); } 14-\text{H: 4.24 (d,J=3Hz); } 5-\text{H: 4.05 (s); } 20-\text{H}_2: 3.80^{\frac{1}{2}} 0.03 \text{ (J}_{AB} = 12\text{Hz}); } 7-\text{H: 3.34} \\ \text{(s); } 10-\text{H: 3.1 (d, J=12Hz); } 8-\text{H: 2.93 (d, J=3Hz); } 17-\text{H}_3: 1.71 \text{ (s); } 19-\text{H}_3 \text{ and } 18-\text{H}_3: 1.13 \text{ (d, J=6Hz) and 0.95 ppm (d, J=7\text{Hz}).} \\ \end{array}$

Synaptolepis factor K_1 (IIb, 0.1%, $ID_{50} = 0.003$): ms: 614; ir (CH_2Cl_2) : 3520 (OH) 1735 cm⁻¹ (CO); nmr $(CDCl_3)$: 16- H_2 : 5.05 (s) and 4.92 (s,br.); 14-H: 4.35 (s, J=3Hz); 5-H: 4.05 (s); 20- H_2 : 3.80 $^{\pm}$ 0.02 (J_{AB} =12Hz); 7-H: 3.42 (s); 10-H: 3.0 (d, J=12Hz); 8-H: 2.94 (d, J=3Hz); 17- H_3 : 1.8 (s); 19- H_3 and 18- H_3 : 1.14 (d, J=7Hz) and 0.9 (d, J=6Hz); signals of olefinic protons in the alkyl chain 6.25 (dd), 5.6 (d), appr. 22-24 H: 1.28-1.30 ppm (s). Decoupling experiments support the presence of an α , β -unsaturated orthoester group.

Pimelea factor P_6 (IIc, 0.006%, ID_{50} = 0.08): ir (CH_2Cl_2): 3460 (0H), 1740, 1710 (C=0), 1640 cm⁻¹ (C=C); uv (MeOH): λ_{max} 195, 229, 265, 273, 280 nm (ε_{max} 43030, 13960, 1150, 1270, 1080); nmr ($CDCl_3$, δ): 16-H₂: 5 arom. H: 8.0 (m), 7.5 (m); 16-H₂: 5.0 (s) and 4.9 (s,br.); 14-H: 4.32 (d,J 5-H: 4.12 (s); 20-H₂: 3.82 (s); 7-H: 3.42 (s); 10-H: 3.35 (d, J=10Hz); 8-H: 2.9 (d, J=3Hz); 17-H₃: 1.76 (s); 19-H₃: 1.08 (d, J=7Hz); 18-H₃: 0.92 (d, J=6Hz); a further CH_3 -group (1.46 ppm, d, J=7Hz) is decoupled upon irradiation at 2.55 ppm. The signal of a geminal ester proton (5.05 ppm, m) appears as a singlet upon irradiation at 1.66 ppm. In contrast to P_2 the factors S_7 , K_1 and P_6 contain a 3-keto group.

As in Ia, acid hydrolysis of S_7 , K_1 and P_6 did not afford free acids. Analysis of the mass spectral data of the three factors suggest that, as in P_2 (Ia), the acid moieties of S_7 , K_1 and P_6 are associated with one double bond equivalent indicating a cyclic structure for the orthoester residue. Hence, by analogy, for factors S_7 , K_1 and P_6 the structures IIa, IIb and IIc are proposed, respectively. For K_1 , a possible branching of the side chain remains to be clarified. The position of the benzoyl group in P_6 (IIc) lends support from decoupling experiments and the multiplicity of the geminal ester proton signal in P_6 and its derivatives.

<u>Acknowledgements</u>: We wish to thank Dr. T. Cashmore (Palmerton North, New Zealand) and Dr. R.B. Roberts (Sydney, Australia) for kindly supplying plant materials.

References

- S.M. Kupchan, Y. Shizuri, T. Murae, J.G. Sweeny, H.R. Haynes, Ming-Shing Shen, J.C. Barrick, R.F. Bryan, J.Amer.Chem.Soc., 98, 5719 (1976).
- 2) W. Adolf, E. Hecker, Tetrahedron Lett., 19, 1587 (1975).
- E. Hecker, R. Schmidt, Progr. Chem. Org. Nat. Prod., 31, 377 (1974).
- 4) B. Weinstein, M. Wigler, C. Pietropaolo, Cold Spring Harbor Symposium on the Origin of Human Cancer, Sept. 1976, in press.